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Chapter 6
Free Electron Fermi Gas

6.1  Electron Gas Model and its Ground State
6.2  Thermal Properties of Electron Gas
6.3  Free Electrons in Electric Fields
6.4  Hall Effect 
6.5  Thermal Conductivity of Metals
6.6  Failures of the free electron gas model
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6.1 Electron Gas Model and its Ground State
I. Basic Assumptions of Electron Gas Model

Metal: valence electrons→ conduction electrons (moving freely)

6.1 Electron Gas Model and its Ground State

ü The simplest metals are the alkali metals—lithium, sodium, 
potassium, cesium, and rubidium.
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Free electron gas model: Suppose, except the confining
potential near surfaces of metals, conduction electrons are
completely free. The conduction electrons thus behave just
like gas atoms in an ideal gas --- free electron gas.

density of electrons:

A
ZNn m

A
r=

3

3
41

srN
V

n
p==

31

4
3

÷
ø

ö
ç
è

æ
=

n
rs p

where Z is # of conduction electrons per atom, A is relative

atomic mass, rm is the density of mass in the metal. The

spherical volume of each electron is,

6.1 Electron Gas Model and its Ground State
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Total energy are of kinetic type, 

ignore potential energy contribution.

Basic Properties：

ü The classical theory had several conspicuous successes

6.1 Electron Gas Model and its Ground State

ü Ignore interactions of electron-ion type (free electron approx.)

ü And electron-eletron type (independent electron approx). 
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Long Mean Free Path:

6.1 Electron Gas Model and its Ground State

ü From many types of experiments it is clear that a conduction 

electron in a metal can move freely in a straight path over many 

atomic distances.

ü In a very pure specimen at low temperatures, the mean free 

path may be as long as 108 interatomic spacings (more than 1 

cm).

ü Condensed matter so transparent to conduction electrons:

l Due to periodic lattice structure.

l Due to quantum nature of electrons: Pauli exclusive principle.
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II. Quantum Free Electron Model -- single electron 
state and eigenenergy

1. Schrödinger Equation

Þ Single electron problem in a 3D space
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2. Boundary Condition
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——periodic B.C.

3. Solution of Schrödinger's equation
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energy eigenvalues：

6.1 Electron Gas Model and its Ground State
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4. physical meaning of     vectork
!
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Require the plain wave solutions to fullfil PBC:
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Free electron's eigen energy levels are discontineous,  and are 
pretty close to each other. 
5. k-space and density of states (DOS)
In the k-space, every     point represents a possible state of 

electron (orbital). Neigboring representative points are 

equally spaced by           in three dimensions. So the volume 

each point occupies is:
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For each state (orbital), electrons have two different  spin 
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individual spinful electronic states：
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6.1 Electron Gas Model and its Ground State
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III. Ground state properties of free electron gas
Ground state of free electron gas means its property at the 

absolutely zero temperature.

Fermi sphere: obeying Pauli principle, electrons fills the orbitals 

from low energy to high levels, and form a sphere in k space.

Fermi wave vector: Fk
!

( ) 3123 nkF p=

Fermi surface: Interface betwee occupied and unoccupied states

6.1 Electron Gas Model and its Ground State
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Fermi energy: Single electron energy on the Fermi surface
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6.1 Electron Gas Model and its Ground State

Fermi velocity: The electron velocity vF at the Fermi surface

Fermi temperature:  TF is defined as ƐF/kB

Has nothing to do with the real temperature of the electron gas!
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Excise: mean energy of electrons：

( )

( ) ( )

F

F F

g
N

g g

0

0 0

1 d

d d

e

e e

e e e e

e e e e e

=

=

ò

ò ò

FBF Tk
5
3

5
3 == ee

Even the ground state has some finite kinetic energy

--- due to Pauli principle

6.1 Electron Gas Model and its Ground State
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6.2  Thermal Properties of Free Electron Gas

I. Fermi Distribution
Distribution of free electrons in energy levels: Fermi-Dirac statistics

At temperature , the probability that energy level     is occupied 

in thermal equilibrium:
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1.   0®T
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At absolutely zero temperature, levels with energy < are all 
occupied, and the levels above it are all empty. Chemical potential 
(Fermi energy) is the highest energy level electrons takes at T=0;

µ
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level have equal probability to 
be filled or to ramain empty.
µ
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T rises, the step becomes 
more and more blurred.

6.2  Thermal properties of free electron gas
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II. Chemical Potential
1. ground state ,0=T Fe
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2. thermal excitation 0>T µ<<TkB

Electrons near Fermi surface can be excited to states outside 

Fermi surface, leaving some empty states (holes) inside.
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6.2  Thermal properties of free electron gas

üFermi temperature is high: TF= 50,000 K.
üThe chemical potential at each temperature may be read off the 

graph as the energy at which f = 0.5.

Fermi-Dirac distribution function

1/2



3. Density of States

6.2  Thermal properties of free electron gas
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III.electron heat capacity
contant volume
specific heat：
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At room temperatures, electrons' contribution to total 
specific heat is negligible.

Analysis：classically, mean energy of 1 mol electron gas
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6.2  Thermal properties of free electron gas
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TC e
V g= is elctron specific heat constantg
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6.2  Thermal properties of free electron gas



Thermal Effective Mass

6.2  Thermal properties of free electron gas

Thermal effective mass mth to the electron mass m:

Heavy Fermions

Several metallic compounds have been discovered that have enormous 
values, two or three orders of magnitude higher than usual, of the 
electronic heat capacity constant.

Due to 3 facts: interaction with periodic potential, with phonon, with 
electrons themselves.
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6.3  Free Electrons in Electric Fields

I. Drude model for free electrons

Ø relaxation timet
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Semiclassical

6.3  Free Electrons in Electric Fields

Transport properties of electrons: electric & thermal conductivity.

ü Drude's assumptions: neglects any long-range 
interaction between the electron and the ions or 
between the electrons. 

ü Consider only the instantaneous collisions.

Paul Drude
German physicistProbability of collision within the time intervel    ：td

of the order of 1 Å
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II. Electron Gas in External Fields: Equation of Motion
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——E.O.M. of electron gas in external fields

At moment t, average momentum of electrons     , external force 

F(t). After time dt, the chance that an electrons is uninvolved in 

any collision is (1-dt/t), their contribution to mean momentum is:

6.3  Free Electrons in Electric Fields
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III. Electric Conductivity of Metals
1. Classical Picture
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In a Steady State:
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External Fields are on：conduction electrons are drifting 
towards a specific direction, with a (drifting) velocity         .

In the absence of electric fields, conduction electrons are in a 
random motion:

0av =v!

① since

6.3  Free Electrons in Electric Fields



28

② For any single electron, since its last collision, in time t it 
travels:

in the absence of fields： 0v!

if electric field is on: meEt-

Suppose that the electrons move radomly after collisions

0v! has nothing to do with average velocity of the electron gas avv!

avv! is determined by drift velocity of each electron:

m
Eevv t
!

!! -== avd

6.3  Free Electrons in Electric Fields



electric current： E
m
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s= --Ohm's law

ü Electric conductivity µ density of conduction electrons, 
inversly proportional to electron mass m.

6.3  Free Electrons in Electric Fields
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Arnold Sommerfeld

6.3  Free Electrons in Electric Fields

Arnold Sommerfeld
German Physicist
1868-1951

In solid-state physics, the free electron model is a 
simple model for the behaviour of valence electrons 
in a crystal structure of a metallic solid. 

It was developed principally by Arnold Sommerfeld
who combined the classical Drude model with 
quantum mechanical Fermi–Dirac statistics and 
hence it is also known as the Drude–Sommerfeld 
model.

Doctoral students: Werner Heisenberg, Wolfgang Pauli, Peter Debye, Paul 
Sophus Epstein, Hans Bethe, Ernst Guillemin, Karl Bechert, Paul Peter 
Ewald, Herbert Fröhlich, Erwin Fues, Helmut Hönl, Ludwig Hopf, Walther 
Kossel, Adolf Kratzer, Alfred Landé, Otto Laporte, Wilhelm Lenz, Rudolf 
Peierls, Walter Rogowski, Rudolf Seeliger, Heinrich Welker, Gregor Wentzel 

Other notable students: Herbert Kroemer, Linus Pauling, Walter Heitler



2. Sommerfeld's Picture
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6.3  Free Electrons in Electric Fields

Arnold Sommerfeld
German Physicist
1868-1951
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according to Newton's second law：

Eek
t

v
t

mF
!!

"
!!

-===
d
d

d
d
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In the absence of collisions, steady electric fields drives the 

Fermi sphere in    space to move in a constant velocity.k
!

Electron gas fills Fermi sphere in k space centered at    .k
!

0=t apply electric field E
!

at time t, the center of Fermi sphere moves to:

!
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6.3  Free Electrons in Electric Fields
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The scattering of electrons with impurities, crystal defects, as well as 

phonons, keeps the moving Fermi sphere in a steady state.

Give relaxation time t, the center of Fermi sphere moves：

!
""
td Eek -=

6.3  Free Electrons in Electric Fields
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3. Mean Free Path of Electrons

classical electron gas： t0vl =

quantum electron gas： tFvl =

MFP of electrons is much larger than that classical theory predicts.

6.3  Free Electrons in Electric Fields
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classical electron gas— resistivity is due to collisions between 

electrons and electrons, lattice ions, etc.

quantum electron gas—when ideal periodic structure is broken, 

collision with atomic vibration, defects contributes to resistivity.

ü Electric current is contributed 

by a small portion of electrons 

moving with large velocity.

Fermi Statistics & Band theory：

*=
m

ne Fts
2

6.3  Free Electrons in Electric Fields
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6.4  Hall Effect
The force an electron feels in a magnetic field：
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6.4  Hall Effect
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For steady current in a electric field, the drift velocity is:
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6.4  Hall Effect
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For a long rod, apply external elctric field Ex, there exists electric 
current Jx. Apply B field along z axis, the Lorentz force is along the 
negative y direction.

ü Electrons gather on the negative y side of the conductor,  
establishing a transverse field---Hall field Ey, which cancels out
the Lorentz force, and the net current flows along x direction.

6.4  Hall Effect
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0=yJ , Hall electric field:

xx
c

y J
ne
BJE -=-=

0s
tw

define
BJ

E
R

x

y
H = --Hall coefficient

ne
RH

1-=

Free electron approximation, Hall coefficient is negative.

Measuring Hall coefficient is one important tool for 
determining density of charge carriers.

6.4  Hall Effect



ü Quantum Hall effect
For a two-dimensional electron system which can be produced in a 

MOSFET, in the presence of large magnetic field strength and 
low temperature, one can observe the quantum Hall effect, 
which is the quantization of the Hall voltage.

ü Spin Hall effect
It was predicted by M. I. Dyakonov and V. I. Perel in 1971 and 

observed experimentally more than 30 years later, both in 
semiconductors and in metals, at cryogenic as well as at room 
temperatures.

ü Quantum spin Hall effect

ü Anomalous Hall effect

6.4  Hall Effect
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6.5   Thermal Conductivity of Metals

thermal current： TJQ Ñ-= k

thermal conductivity： Phe kkk +=

insulator — phonon

metal — electron

physical picture:

Electrons have higher kinetic energy around the hot end, and 

diffuss to the cold end; Electrons have higher electric potential 

energy in the cold end, and diffuse to the hot end.

There exist energy flow, but no net electric current. 

6.5   Thermal Conductivity of Metals
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Semiclassical: electrons near the Fermi surface are responsible 
for the thermal conductivity. 
free electron gas: 
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44

electric conductivity：
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Wiedemann-Franz Law (1953)：

At not too low temperatures, the ratio of thermal conductivity to 

electric conductivity is proportional to temperature T, i.e.,            .

T
m
nk FB

e 3

22 tpk =

28 Ω/KW10452 ×´= -.L

Tµ
s
k

6.5   Thermal Conductivity of Metals
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6.6 Failures of the free electron gas model

I. Drude used classical statistical mechanics, corrected 
by Sommerfeld by applying Fermi-Dirac statistics.

Successfully Accounts for a wide range of metallic properties.

II. Difficulties with the Free Electron Model

Inadequacies in the free electron model:

1. Static Thermodynamic Predictions: linear term prediction in 
the specific heat is very poor for transistion metals like iron.

2. Electron Transport Coefficients: Hall coefficient (-1/ne), 
magnetorisistence (independent of field strength), and others.

6.6 Failures of the free electron gas model



III. Review of Basic Assumptions

p Free Electron Approximation: ions play little role

p Independent Elec Approx.: elec-elec interactions are ignored

p Relaxation-Time Approx.: electrons have no “memory”, 

collision happens on a average time of τ 

Ø Effects of ions on the dynamics of electrons (between collisions)

Ø The role ions play during collision is left unspecified
Ø Ions (independent dynamic entities) may also contribute 
significantly to physical properties (phonons in metals!)

Free Electron Approx. is mainly responsible for the difficulties in 
Drude's and Sommerfeld's Metallic Theories:

6.6 Failures of the free electron gas model


